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Abstract

In road construction, it is important to estimate difficult-measure
stiffness of the pavement’s upper layer based the easier-to-measure over-
all stiffness and the stiffness of the lower layer. In situations when the
overall stiffness is not yet sufficient, it is also important to estimate how
much more we need to add to the upper layer to reach the desired over-
all stiffness. In this paper, for the cases when a linear approximation is
sufficient, we provide analytical formulas for the desired estimations.
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1 Formulation of the Problems

Need for multiple-layer pavements. Usually, the soil is not stiff enough to
serve as a base for the road. Two ideas are used to reach the desired stiffness:

• first, the soil is compacted, to increase it stiffness;

• second, on top of the compacted soil – which now serves as a subgrade –
a stiffer layer of another material (“base”) is placed (and then compacted
too).

How to characterize stiffness. Stiffness describes how much the pavement
is displaced under the external force: the smaller the resulting displacement,
the stiffer the pavement. Thus, stiffness is usually characterized by the ratio
of the stress (force per unit area) to the corresponding displacement (also
known as deflection). In mechanics, this ratio is called modulus. The larger
the modulus, the stiffer the pavement.

Need to measure stiffness. Road specification requires:

• that the overall stiffness is above a certain threshold (described in pave-
ment specifications), and

• that the stiffness of the upper later is also above some threshold – already
described in the pavement specifications.

Thus, to make sure that the pavement satisfies the specifications, we need to
measure the corresponding stiffness values.

The overall stiffness can be measured directly. The overall pavement
stiffness can be measured directly, e.g., by using a light weight deflectormeter
(LWD): a falling weight hits the pavement, and we measure the deflection
caused by this fall. In this experiment, we know the force, and we know the
contact area, so we can compute the stress. Thus, we can find the value of the
desired overall modulus by dividing this stress by the observed deflection.

The stiffness of the upper layer is not easy to measure directly. In
contrast to the overall stiffness, the stiffness of the upper layer is not easy to
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measure directly: whatever force we apply, the resulting deflection is deter-
mined not only by the upper layer (base), but also by the elastic properties of
the lower layer (subbase).

Main problem: determine the stiffness of the pavement’s upper layer
based on the overall stiffness and the stiffness of the lower layer.
Since we cannot easily measure the desired stiffness directly, a natural idea is
to measure it indirectly, i.e., measure related quantities and try to reconstruct
the desired stiffness based on the measurement results.

In our case, the only reasonably-easy-to-measure quantity is the overall
stiffness. Good news is that we can measure it both after the upper layer is
placed and compacted and before the upper layer is placed and compacted –
in which case we measure stiffness of the lower layer. Thus, we arrive at the
following problem:

• given the overall stiffness and the stiffness of the lower layer,

• estimate the stiffness of the upper layer.

Auxiliary problem. When the measured overall stiffness is above the desired
thresholds, this means that the pavement is ready. But what if the measure-
ments show that we have not yet reached the desired stiffness value? In this
case, it is desirable to estimate how much more of the base we should add to
reach the desired stiffness value; see, e.g., [1, 2, 3, 4, 5].

What we do in this paper. In this paper, we consider a linear approximation
model, and we show, how to solve – in this approximation – the above two
problems, i.e.:

• to determine the stiffness of the upper layer based on the overall stiffness
and the stiffness of the lower layer, and

• if needed, to estimate how much more of the upper layer we need to reach
the desired overall stiffness.

Comment. There exist several techniques for performing similar estimates in
the general case, when we consider the actual non-linear model instead of a
linearized approximation; see, e.g., [2, 5].

2 Analysis of the First Problem

Starting point for our analysis: Boussinesq solution. In the first ap-
proximation, we can ignore the depth of the pavement, so we can consider the
pavement as an infinite isotropic half-space z ≥ 0.
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When LWDs estimate the stiffness of the pavement, they apply the force in
an area of a small radius r0. This radius is much smaller than the size of the
road, so, from the mathematical viewpoint, we can safely describe the effect
of the LWD as a point force.

For the point force applied to an infinite isotropic half-space, there is an
explicit solution first provided by Boussinesq. According to this solution, the
vertical displacement u caused by the vertical force F at a point (x, y, z) has
the form

u(x, y, z) =
F

2π
· 1 + ν

E
·
(
2(1− ν)

r
+

z2

r3

)
, (1)

where r
def
=

√
x2 + y2 + z2, ν is the Poisson ratio, and E is the Young modulus.

We are interested in the deflection at the point of contact. Strictly speaking,
for the point force, the above formula leads to an infinite displacement. To
make the answer realistic, we need to take into account that the LWD is
actually not a point, it is a small disk. Thus, to estimate the deflection cause
by the LWD, it is reasonable to take the deflection corresponding to some

“average” distance r0 from the LWD’s center. Substituting r =
√
r20 + z2 into

the above formula (1), we get

u(z) =
F

2π
· 1 + ν

E
·

 2(1− ν)√
r20 + z2

+
z2

(r20 + z2)3/2

 , (2)

i.e.,

u(z) =
F

2π
· 1 + ν

E
· U(z), (3)

where we denoted

U(z)
def
=

2(1− ν)√
r20 + z2

+
z2

(r20 + z2)3/2
. (4)

What we measure is the deflection at the surface, when z = 0. Substituting
z = 0 into the formula (2), we get the following formula for the measured
deflection ũ:

ũ =
F

2π
· 1 + ν

E
· 2(1− ν)

r0
. (5)

From the homogeneous situation to the situation when the modulus
may change with depth. The formula (2) describes the case when the
elasticity modulus E is the same for all the depths. We would like to use this
formula to predict what will happen in the more realistic setting, when the
elasticity modulus changes with depth, i.e., when E = E(z).
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To come up with such a formula, let us recall that as the force is applied,
the deflection starts at the top, at the point where the force is applied, and
propagates down, to larger depths z.

In general, a layer between depths z and z+∆z has a thickness ∆z. After
the application of the force, the top boundary of this layer, at depth z, is
shifted by the deflection u(z), so it now at depth z+u(z). Similarly, the lower
boundary of this layer, at depth z+∆z, is shifted by the deflection u(z+∆z),
so it now at depth z + ∆z + u(z + ∆z). The new thickness of the layer can
be computed as the difference between the new depths of its lower and upper
boundaries, i.e., as the value

(z +∆z + u(z +∆z))− (z + u(z)) = ∆z + (u(z +∆z)− u(z)).

If this layer is absolutely stiff (incompressible), then its thickness cannot
change, so we have ∆z+(u(z+∆z)−u(z)) = ∆z and thus, u(z+∆z)−u(z) = 0.
If this layer is absolutely soft, then it will fully absorb all the compression and
the bottom boundary will not change at all.

Both conclusions are based only on the elasticity of this particular layer. In
general, it is reasonable to assume that the relative deflection u(z+∆z)−u(z)
of a narrow layer depends only on the elasticity of this layer. For thin layers,
the difference is approximately equal to u′(z) ·∆z, where u′(z) is the derivative
of the function u(z) that describes how deflection u changes with depth z. So,
we conclude that the derivative u′(z) should depend only on the local value
E(z).

To find the dependence of u′(z) on E(z), let us take into account that, by
differentiating both sides of the formula (3), we conclude that, for every value
E and for every depth z, we have

u′(z) =
F

2π
· 1 + ν

E
· U ′(z). (6)

Thus, the desired dependence takes the form

u′(z) =
F

2π
· 1 + ν

E(z)
· U ′(z). (7)

By integrating this derivative and taking into account that the deflection dis-
appears at infinity u(∞) = 0, we can get the desired formula for the deflection
u(z):

u(z) = −(u(∞)− u(z)) = −
∫ ∞

z
u′(t) dt. (8)

Substituting the expression (7) into this formula, and taking the constants not
depending on z outside the integral, we conclude that

u(z) = − F

2π
· (1 + ν) ·

∫ ∞

z

1

E(t)
· U ′(t) dt. (9)
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What we observe is the value ũ = u(0) corresponding to z = 0. For this value,
the formula (9) takes the form

ũ = − F

2π
· (1 + ν) ·

∫ ∞

0

1

E(t)
· U ′(t) dt. (10)

Let us apply the resulting formula to the case of the two-layer pave-
ment. Let us use this formula to analyze the pavement situation when we
have a two-layer pavement: the first layer starts at the surface and ends at the
depth z0, and then the second layer starts. We know the overall stiffness E
and we know the stiffness E2 of the second layer. Our goal is to estimate the
stiffness E1 of the top layer,

In this case, E(t) = E1 for 0 ≤ t ≤ z0 and E(t) = E2 for t ≥ z0. Substitut-
ing this expression into the formula (9), we conclude that

ũ =
F

2π
· (1 + ν) ·

(
−
∫ z0

0

1

E1

· U ′(t) dt−
∫ ∞

z0

1

E2

· U ′(t) dt
)
. (11)

Let us estimate these two integrals.

In the first integral, we can take the constant factor
1

E1

outside the integral,

then we get

−
∫ z0

0

1

E1

· U ′(t) dt = − 1

E1

·
∫ z0

0
U ′(t) dt =

1

E1

· (U(0)− U(z0)). (12)

Similarly, in the second integral, we can take the constant factor
1

E2

outside

the integral, then we get

−
∫ ∞

z0

1

E2

· U ′(t) dt = − 1

E2

·
∫ ∞

z0
U ′(t) dt =

1

E2

· U(z0). (13)

Substituting the expressions (12) and (13) into the formula (11), we conclude
that

ũ =
F

2π
· (1 + ν) ·

(
1

E1

· (U(0)− U(z0)) +
1

E2

· U(z0)
)
. (14)

We know that U(0) =
2− 2ν

r0
. Here, z0 ≫ r0, so r20 + z2 ≈ z2, and the

formula for U(z0) takes the form so the above formula takes the form

U(z0) =
3− 2ν

z0
. (15)

Thus, we conclude that

ũ =
F

2π
· (1 + ν) ·

(
1

E1

·
(
2− 2ν

r0
− 3− 2ν

z0

)
+

1

E2

· 3− 2ν

z0

)
. (16)
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Now we are ready to solve the first problem: estimating the stiffness
of the upper layer based on the overall stiffness and the stiffness of
the lower layer. We know the formula (5) that determines how the observed
deflection ũ depends on the overall stiffness E. By equating the expressions
(5) and (16) for the deflection ũ, we get

F

2π
· 1 + ν

E
· 2(1− ν)

r0
=

F

2π
· (1 + ν) ·

(
1

E1

·
(
2− 2ν

r0
− 3− 2ν

z0

)
+

1

E2

· 3− 2ν

z0

)
. (17)

Dividing both sides of this equality by
F

2π
· (1 + ν), we conclude that:

1

E
· 2(1− ν)

r0
=

1

E1

·
(
2− 2ν

r0
− 3− 2ν

z0

)
+

1

E2

· 3− 2ν

z0
. (18)

Now we are ready to describe the solution to our first problem. We assume
that we know the overall stiffness E and the stiffness E2 of the lower layer,
and we would like to know the stiffness E1 of the upper layer. To find E1, we
move the terms containing E2 to the right-hand side of the equation (18):

1

E1

·
(
2− 2ν

r0
− 3− 2ν

z0

)
=

1

E
· 2(1− ν)

r0
− 1

E2

· 3− 2ν

z0
. (19)

By dividing both sides of the resulting equation by the coefficient at 1/E1, we
can find 1/E1:

1

E1

=

1

E
· 2(1− ν)

r0
− 1

E2

· 3− 2ν

z0
2− 2ν

r0
− 3− 2ν

z0

. (20)

By inverting this expression, we arrive at the following formula.

3 Solution to the First Problem

Solution to the first problem: resulting formula. If we know the overall
stiffness E, the stiffness E2 of the lower layer, and the thickness z0 of the upper
layer, then we can compute the stiffness E1 of the upper layer as follows:

E1 =

2− 2ν

r0
− 3− 2ν

z0
1

E
· 2(1− ν)

r0
− 1

E2

· 3− 2ν

z0

, (21)
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where z0 is the effective radius of the LWD device which is used to measure
the stiffness.

It is possible to make the resulting formula easier (and faster) to
compute. We can make this expression faster to compute if we:

• explicitly subtract the fractions in the numerator and in the denominator,
and then

• we explicitly divide the resulting fractions.

In the numerator, we get:

2− 2ν

r0
− 3− 2ν

z0
=

(2− 2ν) · z0 − (3− 2ν) · r0
r0 · z0

. (22)

In the denominator, we get:

1

E
· 2(1− ν)

r0
− 1

E2

3− 2ν

z0
=

2(1− ν) · z0 · E2 − (3− 2ν) · r0 · E
z0 · r0 · E · E2

. (23)

By dividing these two fractions, we conclude that

E1 =
((2− 2ν) · z0 − (3− 2ν) · r0) · E · E2

2(1− ν) · z0 · E2 − (3− 2ν) · r0 · E
. (24)

This expression is faster to compute, since it only has one division – and in
the computer, out of all arithmetic operations, division takes the longest time
to perform. This, by the way, is easy to explain:

• multiplication, crudely speaking, is several additions, so multiplication
takes longer than addition, and

• all known algorithms for division include several multiplications, so di-
vision takes longer than multiplication.

Numerical example. As typical values, let us take ν = 0.4, r0 = 1 in,
z0 = 12 in, and E2 = 0.1 · E1. In this case, from the formula (18), we get
2− 2ν = 1.2, 3− 2ν = 2.2, thus:

1

E
· 1.2
1

=
1

E1

·
(
1.2

1
− 2.2

12

)
+

10

E1

· 2.2
12

,

i.e.,
1.2

E
=

1

E1

· (0.166 . . .+ 1.83 . . .) =
2

E1

,

and so,

E =
1.2

2
· E1 = 0.6 · E1.

So, in this cases, the pavement stiffness E is about 60% of the stiffness E1 of
the base.
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4 Analysis of the Second Problem

Towards solving the second problem: when the overall stiffness is
not sufficient, how much extra base do we need? Let us now use the
formula (18) to decide how much extra base we need if the measured overall
stiffness E is still smaller than the desired pavement stiffness E0. The overall
depth z > z0 of the base can be found from the requirement that when we
have this depth, the resulting overall stiffness will be equal to E0, i.e., we will
have

1

E0

· 2(1− ν)

r0
=

1

E1

·
(
2− 2ν

r0
− 3− 2ν

z

)
+

1

E2

· 3− 2ν

z
. (25)

To find the desired value z, we move all the terms not containing z to the
left-hand side. Thus, we get:

(3− 2ν) ·
(

1

E2

− 1

E1

)
· 1
z
=
(

1

E0

− 1

E1

)
· 2− 2ν

r0
. (26)

By subtracting the fractions, we get:

(3− 2ν) · E1 − E2

E1 · E2

· 1
z
=

E1 − E0

E0 · E1

· 2− 2ν

r0
, (27)

thus:

z =
3− 2ν

2− 2ν
· E1 − E2

E1 − E0

· r0. (28)

Plugging in the formula (24) into this expression, we conclude that

E1 − E2 =
N12

D
,

where
N12

def
= ((2− 2ν) · z0 − (3− 2ν) · r0) · E · E2−

2(1− ν) · z0 · E2
2 − (3− 2ν) · r0 · E · E2

and
D

def
= 2(1− ν) · z0 · E2 − (3− 2ν) · r0 · E.

The numerator can be simplified to

N12 = (2− 2ν) · z0 · E2 · (E − E2),

so

E1 − E2 =
(2− 2ν) · z0 · E2 · (E − E2)

2(1− ν) · z0 · E2 − (3− 2ν) · r0 · E
. (29)

Similarly,

E1 − E0 =
N10

D
,
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where

N10 = ((2− 2ν) · z0 − (3− 2ν) · r0) · E · E2−

2(1− ν) · z0 · E2 · E0 − (3− 2ν) · r0 · E · E0.

Here, the numerator can be simplified into

N10 = (3− 2ν) · r0 · E · (E − E2)− (2− 2ν) · z0 · E2 · (E0 − E),

so

E1 − E0 =
(3− 2ν) · r0 · E · (E − E2)− (2− 2ν) · z0 · E2 · (E0 − E)

2(1− ν) · z0 · E2 − (3− 2ν) · r0 · E
. (30)

These two differences have the same denominator D, so their ratio is simply
equal to the ratio of their numerators:

E1 − E2

E1 − E0

=
(2− 2ν) · z0 · E2 · (E − E2)

(3− 2ν) · r0 · E · (E − E2)− (2− 2ν) · z0 · E2 · (E0 − E)
. (31)

Substituting this ratio into the formula (28) and canceling the terms 2− 2ν in
the numerator and in the denominator, we arrive at the following formula.

5 Solution to the Second Problem

Let us assume that we know the overall stiffness E which is smaller than the
desired overall stiffness E0. Let us also assume that we know the stiffness E2

of the lower layer, and the thickness z0 of the upper layer. In this case, in
order to reach the desired stiffness, we need to increase the thickness z0 of the
upper layer to the new value

z =
(3− 2ν) · z0 · E2 · (E − E2)

(3− 2ν) · r0 · E · (E − E2)− (2− 2ν) · z0 · E2 · (E0 − E)
· r0. (32)
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