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Abstract—While the usual 1-D fuzzy logic has many successful
applications, in some practical cases, it is desirable to come up
with a more subtle way of representing expert uncertainty. A
natural idea is to add additional information, i.e., to go from
1-D to 2-D (and multi-D) fuzzy logic. At present, there are two
main approaches to 2-D fuzzy logic: interval-valued and complex-
valued. At first glance, it may seem that many other options
are potentially possible. We show, however, that, under certain
reasonable conditions, interval-valued and complex-valued are
the only two possible options.

I. INTRODUCTION

Fuzzy logic: reminder. In the traditional two-valued logic,
every statement is either true or false; in the computer these
values are represented as, correspondingly 1 and 0. These two
choices cannot capture a typical situation when an expert is
not 100% sure about the validity of a statement. To capture
such expert uncertainty, L. Zadeh came up with an idea of
fuzzy logic, where for each statement, instead of two possible
truth values 0 and 1, we can have degrees of certainty that can
take any values from 0 to 1 [6], [17], [22].

Once we extended the truth values from the original 2-
valued set {0, 1} to the whole interval [0, 1], we need to also
extend the propositional operations of the traditional 2-valued
logic to this more general set. From the purely mathematical
viewpoint, there are many different ways how we can extend
operations from a smaller set (in this case, the set {0, 1}) to
a larger set (in this case, the interval [0, 1]). Which of these
extensions should we choose?

One way to choose such operations is to take into account
that operations of 2-valued logic have many intuitive prop-
erties, such as commutativity, associativity, distributivity, etc.
When we select a proper extension, it is desirable to preserve
as many properties of the 2-valued logic as possible.

Need for distributivity. Usually, the “and”- and “or”-operation
of fuzzy logic (also known as t-norms and t-conorms) are
selected so as to satisfy the properties of commutativity and
associativity. This still leaves us with plenty of different
choices. It is therefore desirable, among all such operations,
to select those that satisfy additional properties.

One of such additional natural properties is distributivity,
that A& (B∨C) is equivalent to (A&B)∨(A&C). In terms

of an “and”-operation f&(a, b) and an “or”-operation f∨(a, b),
this property means that

f&(a, f∨(b, c)) = f∨(f&(a, b), f&(a, c)).

At first glance, it may sound reasonable to require that
this property is satisfied for all possible values of a, b, and
c – just like we require that the similar commutativity and
associativity properties are satisfied for all possible tuples
of truth values. However, as we have shown in [19], this
“absolute” distributivity implies that f∨(a, b) = max(a, b),
and it is known that sometimes, the expert’s use of “or”
is better described by other “or”-operations. To make the
operations more adequate, we proposed, in [19], to restrict the
above equality to cases when f∨(b, c) < 1. We then showed
that all corresponding pairs of “and”- and “or”-operations are
equivalent to f&(a, b) = a · b and f∨(a, b) = a+ b (to be more
precise, to f∨(a, b) = min(a + b, 1)).

Need for 2-D extensions. The [0, 1]-based fuzzy logic captures
many features of expert uncertainty, but it is well known that in
some situations, it is not fully adequate to distinguish between
different situations.

For example, if we have no information about a given
statement, i.e., if it is equally possible that this statement is true
or it is false, then it makes sense to describe this uncertainty by
the value 0.5 which is located exactly in the middle between
“true” (1) and “false” (0).

On the other hand, if have a lot of information about the
given statement S, and it so happens that we have exactly as
many arguments and facts supporting this statement as we have
in support of its negation, then it also makes sense to describe
this uncertainty by the midpoint value 0.5.

In both situations, the truth value is the same, but the
uncertainty is different. For example, if we add one additional
argument in support of the statement, then:

• in the first case, we now have and argument supporting
S and no arguments supporting ¬S, so the truth value
of S should drastically increase, while

• in the second case, the truth value should not change
much – since the numbers of statement supporting S
and ¬S remains almost equal.



To distinguish between such situations, it is desirable to
supplement the [0, 1]-valued degree of belief with an additional
number (or numbers). The simplest case if when we use one
additional number, i.e., when we use two numbers to describe
our degree of certainty in a given statement.

2-D extensions should be commutative, associative, and
distributive. We have mentioned that from the commonsense
viewpoint, logical operations are commutative, associative,
and distributive. It is therefore reasonable to require that the
corresponding 2-D extensions of fuzzy logic should satisfy all
these three properties.

Known 2-D distributive extensions of 1-D fuzzy logic. Two
2-D extensions of fuzzy logic are known. The most widely
used is interval-valued fuzzy logic, where our degree of cer-
tainty in a statement is described by an interval [d, d] ⊆ [0, 1]
[12], [13], [16]. This enables us to clearly distinguish between
the above two situations:

• the case of complete uncertainty is naturally described
by the interval [0, 1], while

• the case when have many argument in favor of the
statement S and as many arguments against S is
naturally described by a degenerate interval [0, 5, 0.5]
consisting of a single number 0.5.

In principle, we can extend different t-norms and t-conorms to
the interval-valued case, by using a natural extension [4], [14]

f([a, a], [b, b])
def
= {f(a, b) : a ∈ [a, a] and b ∈ [b, b]} =

[f(a, b), f(a, b)].

In particular, if we extend the distributive operations a · b and
a + b to

[a, a] · [b, b] = [a · b, a · b]

and
[a, a] + [b, b] = [a + b, a + b],

we get a distributive interval-valued logic.

Another useful 2-D distributive extension of the usual fuzzy
logic is the complex-valued fuzzy logic, in which the degrees
of belief can take any complex values a+b · i, with i

def
=
√
−1;

see, e.g., [1], [2], [3], [8], [9], [15]. While it is empirically
successful, it is not as widely used an interval-valued fuzzy
logic, since it lacks a clear justification and clear interpretation.

Are there other extensions? At first glance, it looks like the
above two extensions have been rather arbitrarily chosen, and
in principle, there are many other extensions. In this paper,
we show, however, that interval-valued and complex-valued
are the only possible 2-D distributive extensions of the usual
fuzzy logic.

In our opinion, this result elevates complex-valued fuzzy
logic from the status of one of the mathematically possible
extensions to a much higher status of one of the two possible
extensions – and will, hopefully lead to a more frequent use
of complex-valued fuzzy logic.

II. ANALYSIS OF THE PROBLEM AND THE MAIN RESULT

Toward precise description of a general 2-D distributive
extensions: set of possible values. We start with real-valued
operations · and +. We want to extend these operations to a
2-D set. To avoid confusion, let us denote operations on a 2-D
set by � and ⊕.

The fact that these operations extend the usual multiplica-
tion and addition of real numbers a and b, means that for real
numbers, these operations coincide with the usual addition and
multiplication: a� b = a · b and a⊕ b = a + b.

For that, we need to extend the set of usual real numbers
to a larger set containing an additional element x.

• In the case of intervals, x is one of the non-degenerate
intervals [a, a], with a < a.

• In the case of complex numbers, x is either the square
root of −1, or, more generally, any non-real complex
number a + b · i, with b 6= 0.

• In general, x can be anything.

On this extended set, we want to allow multiplication.
Thus, we need to consider elements of the type b � x for
arbitrary real numbers b. We also want to allow addition
between real numbers a and the products b� x. So, we need
to consider elements of the type

a⊕ (b� x). (1)

The set of all such elements depends on two parameters a and
b and is, therefore, already 2-dimensional. Since we are inter-
ested in 2-D extensions, this means that the desired extension
cannot contain any other elements. So, each extension is the
set of all the elements of type (1).

Addition (“or”-operation) on the set of possible values.
Commutativity, associativity, and distributivity help us define
the sum of elements of type (1). Indeed, if we have the
elements a⊕(b�x) and a′⊕(b′�x), then, due to commutativity
and associativity of addition, we get

(a⊕ (b� x))⊕ (a′ ⊕ (b′ � x)) =

(a⊕ a′)⊕ (b� x⊕ b′ � x).

Here, a and a′ are both real numbers, so

(a⊕(b�x))⊕(a′⊕(b′�x)) = (a+a′)⊕((b�x)⊕(b′�x)). (2)

Now, distributivity implies that

(b� x)⊕ (b′ � x) = (b⊕ b′) · x.

i.e.,
(b� x)⊕ (b′ � x) = (b + b′)� x. (3)

Substituting the expression (3) into the formula (2), we get the
following formula:

(a⊕ (b� x))⊕ (a′ ⊕ (b′ � x)) =

(a + a′)⊕ ((b + b′)� x). (4)

In other words, we have a component-wise addition.



Comment. It should be mentioned that both for intervals and
for complex numbers, we do have component-wise addition.

Multiplication (“and”-operation) on the set of possible
values. Due to distributivity, we have

(a⊕ (b� x))� (a′ ⊕ (b′ � x)) =

(a� a′)⊕ ((a� b′ + a′ � b)� x)⊕ ((b� b′)� (x� x)).

Since for real numbers, the new operations � and ⊕ are simply
multiplication and addition, we get:

(a⊕ (b� x))� (a′ ⊕ (b′ � x)) =

(a · a′)⊕ ((a · b′ + a′ · b)� x)⊕ ((b · b′)� (x� x)). (5)

Thus, to describe the product of the new objects, it is sufficient
to know the value of x� x.

Since all the new elements have the form (1), we thus have

x� x = p⊕ (q � x) (6)

for some real numbers p and q. Let us show that we can
simplify this formula by re-selecting the element x.

First, instead of the original element x, we can select a new
element x′ = x⊕

(
−q

2

)
. This new selection does not change

the class of elements a⊕ (b�x): indeed, we have x = x′⊕ q

2
,

and thus, each element a⊕ (b� x) can be represented as

a⊕
(
b�

(
x′ ⊕ q

2

))
=
(
a⊕

(
b� q

2

))
⊕ (b� x′) =(

a + b · q
2

)
⊕ (b� x′),

i.e., as a′ ⊕ (b� x′), where we denoted

a′
def
= a + b · q

2
.

For the new element x′ = x⊕
(
−q

2

)
, we have

x′ � x′ =
(
x⊕

(
−q

2

))
·
(
x⊕

(
−q

2

))
=

(x� x)⊕
((
−2� q

2

)
� x
)
⊕ q2

4
=

(x� x)⊕ ((−q)� x)⊕ q2

4
.

Substituting the formula (6) into this expression, we conclude
that

x′ � x′ = p⊕ (q � x)⊕ ((−q)� x)⊕ q2

4
,

so

x′ � x′ = p⊕ ((q − q)� x)⊕ q2

4
,

and
x′ � x′ = p′ (7)

where we denoted

p′
def
= p⊕ q2

4
= p +

q2

4
.

Thus, without losing generality, we can assume that

x� x = p (8)

for some real number p.

There are three possible cases of p: it can be positive, it
can be negative, and it can be equal to 0. Let us consider these
three cases one by one.

Case when p > 0. In this case, we can simplify the formula
(8) even more, by considering an alternative element

x′′ =
1
√
p
� x.

A switch to this element does not change the class of
elements a⊕(b�x): indeed, since x =

√
p�x′′, each element

a⊕ (b� x) has the form

a⊕ (b� x) = a⊕ (b�√p� x′′) = a⊕ ((b · √p)� x′′),

i.e., the form a⊕ (b′′ � x′′), where we denoted b′′
def
= b · √p.

For the new element x′′, we have

x′′ � x′′ =
1
√
p
� x� 1

√
p
� x =

1

p
� (x� x).

Substituting the expression (8) into this formula, we conclude
that

x′′ � x′′ =
1

p
� p =

1

p
· p = 1.

Thus, without losing generality, in the case of p > 0, we can
conclude that

x� x = 1. (9)

If x was a real number, then we would be able to conclude
that x = 1 or x = −1. However, in our case, x is not a real
number, it is an element that was added to real numbers to get
a 2-D set.

In this case, due to formula (9), the general product formula
(5) takes the form

(a⊕ (b� x))� (a′ ⊕ (b′ � x)) = a′′ ⊕ (b′′ � x), (10)

where
a′′ = a · a′ + b · b′ (11)

and
b′′ = a · b′ + a′ · b. (12)

Let us show that if we interpret each element a ⊕ (b � x)
as an interval [a − b, a + b], then, for intervals consisting of
non-negative numbers:

• the formula (4) becomes a formula for adding inter-
vals, and

• the formulas (10)–(12) becomes the formulas for mul-
tiplying intervals.

Let us consider these two operations one by one.

Case of p = 1: addition. If we add two intervals [a, a] =
[a− b, a + b] and [a′, a′] = [a′ − b′, a′ + b′], then, as we have
mentioned earlier, we get an interval

[a + a′, a + a′] =



[(a− b) + (a′ − b′), (a + b) + (a′ + b′)] =

[a′′, a′′],

where
a′′ = (a− b) + (a′ − b′)

and
a′′ = (a + b) + (a′ + b′).

We want to interpret this interval as [a′′−b′′, a′′+b′′] for some
values a′′ and b′′. For that, we need to select a′′ and b′′ from
the conditions that

a′′ − b′′ = (a− b) + (a′ − b′) (13)

and
a′′ + b′′ = (a + b) + (a′ + b′). (14)

Adding equations (13) and (14) and dividing the result by 2,
we conclude that

a′′ =
1

2
· ((a− b) + (a′ − b′) + (a + b) + (a′ + b′)) =

1

2
· (a− b + a′ − b′ + a + b + a′ + b′) =

1

2
· (2a + 2a′) =

a + a′.

Similarly, subtracting the equation (14) from the equation (13)
and dividing the result by 2, we conclude that

b′′ =
1

2
· ((a + b) + (a′ + b′)− (a− b)− (a′ − b′)) =

1

2
· (a + b + a′ + b′ − a + b− a′ + b′) =

1

2
· (2b + 2b′) =

b + b′.

Thus, for every two intervals

[a− b, a + b] and [a′ − b′, a′ + b′],

their sum is the interval [a′′− b′′, a′′ + b′′], where a′′ = a+ a′

and b′′ = b+b′. This is exactly what the formula (4) implies if
we interpret each number a+ b ·x as an interval [a− b, a+ b].

Case of p = 1: multiplication. If we add multiply intervals
[a, a] = [a− b, a + b] and [a′, a′] = [a′ − b′, a′ + b′], then, as
we have mentioned earlier, we get an interval

[a · a′, a · a′] = [(a− b) · (a′ − b′), (a + b) · (a′ + b′)] =

[a′′, a′′],

where
a′′ = (a− b) · (a′ − b′)

and
a′′ = (a + b) · (a′ + b′).

We want to interpret this interval as [a′′−b′′, a′′+b′′] for some
values a′′ and b′′. For that, we need to select a′′ and b′′ from
the conditions that

a′′ − b′′ = (a− b) · (a′ − b′) (15)

and
a′′ + b′′ = (a + b) · (a′ + b′). (16)

Adding equations (15) and (16) and dividing the result by 2,
we conclude that

a′′ =
1

2
· ((a− b) · (a′ − b′) + (a + b) · (a′ + b′)) =

1

2
· (a ·a′−a · b′− b ·a′ + b · b′ +a ·a′ +a · b′ + b ·a′ + b · b′) =

1

2
· (2a · a′ + 2b · b′) = a · a′ + b · b′.

Similarly, subtracting the equation (15) from the equation (16)
and dividing the result by 2, we conclude that

b′′ =
1

2
· ((a + b) · (a′ + b′)− (a− b) · (a′ − b′)) =

1

2
· (a ·a′ +a · b′ + b ·a′ + b · b′−a ·a′ +a · b′ + b ·a′− b · b′) =

1

2
· (2a · b′ + 2a′ · b) = a · b′ + a′ · b.

Thus, for every two intervals

[a− b, a + b] and [a′ − b′, a′ + b′],

their product is the interval [a′′ − b′′, a′′ + b′′], where a′′ =
a · a′ + b · b′ and b′′ = a · b′ + a′ · b. This is exactly what the
formula (5) with x ·x = 1 implies if we interpret each number
a + b · x as an interval [a− b, a + b].

Case when p > 0: conclusion. In this case, we get interval-
valued fuzzy logic.

Comment. Main formulas for this derivation can be traced to
a pioneering interval paper [20].

Case when p < 0. In this case, we can simplify the formula
(8) by considering an alternative element

x′′ =
1√
|p|
� x.

A switch to this element does not change the class of
elements a ⊕ (b � x): indeed, since x =

√
|p| � x′′, each

element a⊕ (b� x) has the form

a⊕ (b� x) = a⊕ ((b�
√
|p|)� x′′) =

a⊕ ((b ·
√
|p|)� x′′),

i.e., the form a⊕ (b′′�x′′), where we denoted b′′
def
= b ·

√
|p|.

For the new element x′′, we have

x′′ � x′′ =
1√
|p|
� x� 1√

|p|
� x =

1

|p|
� (x� x).

Substituting the expression (8) into this formula, we conclude
that

x′′ � x′′ =
1

|p|
� p =

1

|p|
· p = −1.

Thus, without losing generality, in the case of p < 0, we can
conclude that

x� x = −1. (17)



In this case, the formula (5) takes the form

(a⊕ (b� x))� (a′ ⊕ (b′ � x)) =

((a� b)⊕ ((−1)� a′ � b′))⊕ ((a� b′ ⊕ a′ � b)� x) =

(a · b− a′ · b′)⊕ ((a · b′ + a′ · b)� x),

i.e., the usual multiplication formula for complex numbers.
Since the formula (2) is also the usual formula for adding
complex numbers, we thus get complex-valued fuzzy logic.

Case when p < 0: conclusion. In this case, we get complex-
valued fuzzy logic.

Case when p = 0. In this case, the formula (5) implies that

(a⊕ (b�x))� (a′⊕ (b′�x)) = (a ·a′)⊕ ((a · b′ +a′ · b)�x).

This formula is used in linearization approach to uncertainty
[10], [11], [18]. In this approach, we start with measurement
results x̃i which are reasonably accurate, i.e., close enough to
actual (unknown) values xi of the corresponding quantities so
that we can safely ignore the terms that are quadratic (or higher
order) in terms of the measurement error ∆xi

def
= x̃i − xi.

In general, we are interested in the values of the quantities
y which depend on the directly measured quantities x1, . . . , xn

in a known way: y = f(x1, . . . , xn). For each such quantity,
we are interested in the value y = f(x1, . . . , xn) correspond-
ing to the actual values xi. In practice, we only have the mea-
surement results x̃i, so we estimate y as ỹ = f(x̃1, . . . , x̃n).

How accurate is this estimate? What can we conclude about
the actual value y based on this estimate? By definition of the
measurement error ∆xi, we have xi = x̃i −∆xi, so we have

f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn).

Since the measurement errors ∆xi are small, we can expand
the expression f(x̃1 − ∆x1, . . . , x̃n − ∆xn) in Taylor series
in terms of ∆xi and ignore terms which are quadratic (or of
higher order) in terms of ∆xi. As a result, we get

y = f(x1, . . . , xn) = ỹ +

n∑
i=1

yi ·∆xi,

where we denoted yi
def
= − ∂f

∂xi
.

In particular, if we know the upper bounds ∆i on the
(absolute values of) measurement errors ∆xi – i.e., if we
known that the actual value xi is located in the interval
[x̃i − ∆i, x̃i + ∆i] – then we can conclude that the actual
value y is contained in the interval [ỹ − ∆, ỹ + ∆], where

∆
def
=

n∑
i=1

|yi| ·∆i.

For each quantity y, the actual value can be represented as

y = ỹ +

n∑
i=1

yi ·∆xi. (18)

If we have a second quantity

y′ = ỹ ′ +

n∑
i=1

y′i ·∆xi, (19)

then their sum is represented as

y + y′ = (ỹ + ỹ ′) +
∑
i

(yi + y′i) ·∆xi. (20)

Since the quadratic terms can be ignored, for the product, we
have a representation

y · y′ = (ỹ · ỹ ′) +
∑
i

(ỹ · y′i + ỹ ′ · yi) ·∆xi. (21)

In particular, for n = 1, we have general representation as
y = ỹ + y1 ·∆x1, and the formulas for the sum and product
take the form

y + y′ = (ỹ + ỹ ′) + (y1 + y′1) ·∆x1 (22)

and
y · y′ = (ỹ · ỹ ′) + (ỹ · y′1 + ỹ ′ · y1) ·∆x1. (23)

For x = ∆x1, these are exactly the formulas (4) and (5)
corresponding to p = 0. Thus, we arrive at the following
conclusion.

Case when p = 0: conclusion. This case corresponds to a
special case of interval-valued fuzzy logic, when intervals are
narrow so that we can ignore terms which are quadratic in
terms of their width.

General conclusion. We have thus proven that there are only
two types of distributive 2-D fuzzy logic: interval-valued or
complex-valued.

Comment. From the mathematical viewpoint, the main formu-
las behind the above result are available in [5], [7], [21].
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