
Quantum Computation Techniques for Gauging
Reliability of Interval and Fuzzy Data

Luc Longpré and Christian Servin
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968

Contact email christians@miners.utep.edu

Abstract—In traditional interval computations, we assume that
the interval data corresponds to guaranteed interval bounds, and
that fuzzy estimates provided by experts are correct. In practice,
measuring instruments are not 100% reliable, and experts are
not 100% reliable, we may have estimates which are “way off”,
intervals which do not contain the actual values at all. Usually, we
know the percentage of such outlier un-reliable measurements.
However, it is desirable to check that the reliability of the actual
data is indeed within the given percentage. The problem of
checking (gauging) this reliability is, in general, NP-hard; in
reasonable cases, there exist feasible algorithms for solving this
problem. In this paper, we show that quantum computations
techniques can drastically speed up the computation of reliability
of given data.

I. TWO MAIN SOURCES OF INFORMATION ABOUT THE

REAL-WORLD OBJECTS

In many practical situations, we want to know the state
of the real-world objects and/or systems. In science, we are
simply interested in this state. For example, we may want to
know the level of water in the river, so that we will be able
to predict the possible floods. In engineering, we need the
information about the state of the world to decide on the best
way to favorably change the situation: e.g., how to build a
dam to prevent flooding.

To describe the state of the objects and/or systems, we must
describe the values of the physical quantities that characterize
this state. To get the most accurate and the most reliable
estimate of each quantity, we can measure it – directly or
indirectly. In many cases, it is too difficult or too expensive
to measure all the quantities; in such situations, we can ask
the experts to estimate the values of these quantities. Measure-
ments and expert estimates are thus the two main sources of
information about the real-world objects and systems.

II. MEASUREMENT UNCERTAINTY AND INTERVAL DATA

Measurements are usually more accurate than expert esti-
mates, but they are never 100% accurate. The result x̃ of a
measurement is usually somewhat different from the actual
(unknown) value x of the quantity of interest.

Usually, the manufacturer of the measuring instrument pro-
vides us with an upper bound ∆ on the absolute value of
the measurement error ∆x

def= x̃ − x: |∆x| ≤ ∆. Because
of this bound, once we know the measurement result x̃, we

can conclude that the actual (unknown) value x belongs to the
interval [x̃ − ∆, x̃ + ∆].

In some situations, we also know the probabilities of differ-
ent values ∆x ∈ [−∆,∆]. In this case, we can use the standard
statistical techniques used in science and engineering to pro-
cess the corresponding uncertainty; see, e.g., [16]. However, in
many practical situations, we do not know these probabilities,
we only know the upper bound ∆. In these situations, the
only information that we have about x is that x belongs to the
interval x def= [x̃ − ∆, x̃ + ∆]. In such situations, we need to
process this interval data; see, e.g., [6].

III. EXPERT ESTIMATES AND FUZZY DATA

When measurement is not possible, we can use experts to
estimate the values of the desired quantity. Expert estimates are
never exact, they are approximate estimates x̃ of the desired
quantity x: ∆x = x̃ − x �= 0. Of course, in contrast to the
measuring instruments for which the manufacturer provides
us with an upper bound on the measurement error, there is
no guarantee of expert’s accuracy. Instead of the exact 100%
bounds on |∆x|, we can provide bounds which are valid with
some degree of certainty. This degree of certainty is usually
described by a number from the interval [0, 1].

As a result, after the expert estimate, for each degree β ∈
[0, 1], we have an interval x(α) with contains the actual value
x with certainty α = 1 − β. The larger certainty we want,
the broader should the corresponding interval be. So, we get a
nested family of intervals corresponding to different values α.

An alternative way to describe this nested family of intervals
is to describe, for each possible value x of the quantity of
interest, the largest possible value α for which this value x
belongs to the interval x(α). This value is usually denoted
by µ(x) and called a membership function corresponding to
this estimate. Once we know the membership function, we
can reconstruct the intervals x(α) as its α-cuts: x(α) = {x :
µ(x) ≥ α}; see, e.g., [7], [14].

So, to process expert estimates, we must process the corre-
sponding fuzzy data.

IV. RELIABILITY OF INTERVAL DATA

In interval computations, i.e., in processing interval data, we
usually assume that all the measuring instruments functioned

correctly, and that all the resulting intervals

[x̃ − ∆, x̃ + ∆]

indeed contain the actual value x.
In practice, nothing is 100% reliable. There is a certain

probability that a measurement instrument malfunctions. As a
result, when we repeatedly measure the same quantity several
times, we may have a certain number of measurement results
(and hence intervals) which are “way off”, i.e., which do not
contain the actual value at all.

For example, when we measure the temperature, we will
usually get values which are close to the actual temperature,
but once in a while the thermometer will not catch the
temperature at all, and return a meaningless value like 0. It
may be the fault of a sensor, and/or it may be a fault of
the processor which processes data from the sensor. Such
situations are rare, but when we process a large amount of
data, it is typical to encounter some outliers.

Such outliers can ruin the results of data processing. For
example, if we compute the average temperature in a given ge-
ographic area, then averaging the correct measurement results
would lead a good estimate, but if we add an outlier, we can
get a nonsense result. For example, based on the measurements
of temperature in El Paso in Summer resulting in 95, 100, and
105, we can get a meaningful value

95 + 100 + 105
3

= 100.

However, if we add an outlier 0 to this set of data points, we
get a misleading estimate

95 + 100 + 105 + 0
4

= 75

creating the false impression of El Paso climate.
A natural way to characterize the reliability of the data is to

set up the bound on the probability p of such outliers. Once
we know the value p, then, out of n results of measuring the
same quantity, we can dismiss k

def= p · n largest values and
k smallest values, and thus make sure that the outliers do not
ruin the results of data processing.

V. NEED TO GAUGE THE RELIABILITY OF INTERVAL DATA

Where does the estimate p for data reliability come from?
The main idea of gauging this value comes from the fact
that if we measure the same quantity several times, and
all measurements are correct (no outliers), then all resulting
intervals x(1), . . . ,x(n) contain the same (unknown) value x
– and thus, their intersection is non-empty.

If we have an outlier, then it is highly probably that this
outlier will be far away from the actual value x – and thus,
the intersection of the resulting n intervals (including intervals
coming from outliers) will be empty.

In general, if the percentage of outliers does not exceed p,
then we expect that out of n given intervals, at least n − k

of these intervals (where k
def= p · n) correspond to correct

measurements and thus, have a non-empty intersection.

So, to check whether our estimate p for reliability is correct,
we must be able to check whether out of n given intervals,
n − k have a non-empty intersection.

VI. NEED TO GAUGE RELIABILITY OF INTERVAL DATA:
MULTI-D CASE

In the previous text, we considered a simplified situation
in which each measuring instrument measures exactly one
quantity. In practice, a measuring instrument often measure
several different quantities x1, . . . , xd. Due to uncertainty, after
the measurement, for each quantity xi, we have an interval xi

of possible values. Thus, the set of all possible values of the
tuple x = (x1, . . . , xd) is a box

X = x1 × . . .× xd = {(x1, . . . , xd) : x1 ∈ x1, . . . , xd ∈ xd}.
In this multi-D case, if all the measurements are correct (no
outliers), all the corresponding boxes X(1), . . . , X(n) contain
the actual (unknown) tuple and thus, the intersection of all
these boxes is non-empty.

Thus, to check whether our estimate p for reliability is
correct, we must be able to check whether out of n given
boxes, n − k have a non-empty intersection.

VII. HOW TO GAUGE RELIABILITY OF FUZZY DATA

In the fuzzy case, several experts estimate the value of the
desired (1-D or multi-D) quantity x. Each of such estimates
means that in addition to the (wider) “guaranteed” interval or
box X(0) (about which the expert is 100% confident that it
contains the actual value of x) we also have narrower intervals
(boxes) X(α) which contain x with certainty 1 − α.

If all experts are right, then at least all the guaranteed boxes
X(0) should contain the actual value x. Thus, in this situation,
the boxes X(0) corresponding to different experts must have
a non-empty intersection. In practice, some experts may be
wrong; as a result, the corresponding boxes may be way off,
and the intersection of all the experts’ boxes may turn out to
be empty.

It is reasonable to gauge the reliability of the experts (and,
correspondingly, the reliability of the resulting fuzzy data) by
the probability p that an expert is wrong. For example, if p =
0.1, this means that we expect 90% of the experts to provide
us with correct bounds X(0). In this case, we expect that out
of all the boxes provided by the experts, we can select 90%
of them in such a way that the intersection of these selected
boxes will be non-empty.

For boxes X(α) which are known with smaller certainty,
the experts themselves agree that these boxes may not cover
the actual value x – and thus, the intersection of all such
boxes can also turn out to be false. To describe the related
reliability, we must know, for every α, the probability p that
the corresponding box X(α) does not contain the actual value
x. For example, if for α = 0.5, we have p = 0.3, this means
that we expect 70% of the experts’ boxes X(0.5) to contain
the (unknown) actual value x. In this case, we expect that
out of all the boxes X(0.5) based on expert estimates, we can

select 70% of them in such a way that the intersection of these
selected boxes will be non-empty.

To check whether the data fits these reliability estimates,
we must therefore be able to check whether out of n given
boxes, n − k have a non-empty intersection.

VIII. RESULTING COMPUTATIONAL PROBLEM: BOX

INTERSECTION PROBLEM

Thus, both in the interval and in the fuzzy cases, we need
to solve the following computational problem:

• Given:
• integers d, n, and k; and
• n d-dimensional boxes

X(j) = [x(j)
1 , x

(j)
1] × . . . × [x(j)

n , x(j)
n],

j = 1, . . . , n, with rational bounds x
(j)
i and x

(j)
i .

• Check: whether we can select n − k of these n boxes
in such a way that the selected boxes have a non-empty
intersection.

IX. FIRST RESULT: THE BOX INTERSECTION PROBLEM IS

NP-COMPLETE

The first result related to this problem is that in general, the
above computational problem is NP-hard.

X. THE MEANING OF NP-COMPLETENESS: A BRIEF

EXPLANATION

Crudely speaking, NP-completeness means that it is impos-
sible to have an efficient algorithm that solves all particular
instances of the above computational problem.

The notion of NP-completeness is relayed to the fact that
some algorithms require so much computation time that even
for inputs of reasonable size, the required computation time
exceeds the lifetime of the Universe – and thus, cannot
be practically computed. For example, if for n inputs, the
algorithm requires time 2n, then for n ≈ 300 − 400, the re-
sulting computation time is un-realistically large. How can we
separate “realistic” (“feasible”) algorithms from non-feasible
ones?

The running time of an algorithm depends on the size of
the input. In the computer, every object is represented as
a sequence of bits (0s and 1s). Thus, for every computer-
represented object x, it is reasonable to define its size (or
length) len(x) as the number of bits in this object’s computer
representation.

It is known that in most feasible algorithms, the running
time on an input x is bounded either by the size of the input,
or by the square of the size of the input, or, more generally,
by a polynomial of the size of the input. It is also known
that in most non-feasible algorithms, the running time grows
exponentially (or even faster) with the size, so it cannot be
bounded by any polynomial. In view of this fact, in theory
of computation, an algorithm is usually called feasible if its
running time is bounded by a polynomial of the size of the
input. This definition is not perfect: e.g., if the running time
on input of size n is 1040 ·n, then this running time is bounded

by a polynomial but it is clearly not feasible. However, this
definition is the closest to the intuitive notion of feasible, and
thus, the best we have so far.

According to this definition, an algorithm A is called
polynomial time if there exists a polynomial P (n) such that
on every input x, the running time of the algorithm A does
not exceed P (len(x)). The class of all the problems which
can be solved by polynomial-time algorithms is denoted by P.

What do we mean by “a problem”? In most practical
situations, to solve a problem means to find a solution that
satisfies some (relatively) easy-to-check constraint: e.g., to
design a bridge that can withstand a certain amount of load and
wind, to design a spaceship and its trajectory that enables us to
deliver a robotic rover to Mars, etc. In all these cases, once we
have a candidate for a solution, we can check, in reasonable
(polynomial) time whether this candidate is indeed a solution.
In other words, once we guessed a solution, we can check its
correctness in polynomial time. In theory of computation, this
procedure of guess-then-compute is called non-deterministic
computation, so the class of all problems for which solution
can be checked in polynomial time is called Non-deterministic
Polynomial, or NP, for short.

Most computer scientists believe that not all problems from
the class NP can be solved in polynomial time, i.e., that NP�=
P . However, no one has so far been able to prove that this
belief is indeed true. What is known is that some problems
from the class NP are the hardest in this class – in the sense
that every other problem from the class NP can be reduced to
such a problem.

Specifically, a general problem (not necessarily from the
class NP) is called NP-hard if every problem from the class
NP can be reduced to particular cases of this problem. If a
problem from the class NP is NP-hard, we say that it is NP-
complete.

One of the best known examples of NP-complete problems
is the problem of propositional satisfiability for formulas in
3-Conjunctive Normal Form (3-CNF). Let us describe this
problem is some detail. We start with v Boolean variables
z1, . . . , zv , i.e., variables which can take only values “true”
or “false”. A literal � is defined as a variable zi or its
negation ¬zi. A clause is defined as a formula of the type
�1 ∨ �2 ∨ . . . ∨ �m. Finally, a propositional formula in Con-
junctive Normal Form (CNF) is defined as a formula F of
the type C1 & . . . &Cn, where C1, . . . , Cn are clauses. This
formula is called a 3-CNF formula if every clause has at most
3 literals, and a 2-CNF formula if every clause has at most 2
literals.

The propositional satisfiability problem is as follows:

• Given a propositional formula F (e.g., a formula in CNF);
• Find the values of the variables z1, . . . , zv which make

the formula F true.

For the propositional satisfiability problem, the proof of
NP-hardness is somewhat complex. However, once this NP-
hardness is proven, we can prove the NP-hardness of other
problems by reducing satisfiability to these problems.

Indeed, by definition, NP-hardness of satisfiability means
that every problem from the class NP can be reduced to
satisfiability. If we can reduce satisfiability to some other
problem, this means that by combining these two reductions,
we can reduce every problem from the class NP to this new
problem – and thus, that this new problem is also NP-hard.

For a more detailed and more formal definition of NP-
hardness, see, e.g., [10], [15].

XI. THE BOX INTERSECTION PROBLEM IS NP-COMPLETE

In the Appendix, we present a proof that the box intersection
problem is NP-complete. The main ideas of this proof comes
from [9].

XII. CASE OF FIXED DIMENSION: EFFICIENT ALGORITHM

FOR GAUGING RELIABILITY

In general, when we allow unlimited dimension d, the
box intersection problem (computational problem related to
gauging reliability) is computationally difficult (NP-hard).

In practice, however, the number d of quantities measured
by a sensor is small: e.g.,

• a GPS sensor measures 3 spatial coordinates;
• a weather sensor measures (at most) 5: temperature,

atmospheric pressure, and the 3 dimensions of the wind
vector, etc.

It turns out that if we limit ourselves to the case of a
fixed dimension d, then we can solve the above computational
problem in polynomial time O(nd); see, e.g., [3].

Indeed, for each of d dimensions xi (1 ≤ i ≤ d), the
corresponding n intervals have 2n endpoints x

(j)
i and x

(j)
i . Let

us show if there exists a vector x which belongs to ≥ n − k
boxes X(j), then there also exists another point y with this
property in which every coordinate yi coincides with one of
the endpoints. Indeed, if for some i, the value xi is not an
endpoint, then we can take the closest endpoint as yi. One
can easily check that this change will keep the vector is all
the boxes X(j).

Thus, to check whether there exists a vector x that belongs
to at least n− k boxes X(j), it is sufficient to check whether
there exist a vector formed by endpoints which satisfies this
property. For each vector y = (y1, . . . , yd) and for each box
X(j), it takes d = O(1) steps to check whether y ∈ X(j). After
repeating this check for all n boxes, we thus check whether this
vector y satisfies the desired property in time n·O(1) = O(n).

For each of d dimensions, there are 2n possible endpoints;
thus, there are (2n)d possible vectors y formed by such
endpoints. For each of these vectors, we need time O(n), so
the overall computation time for this procedure requires time
O(n) · (2n)d = O(nd+1) – i.e., indeed time which grows
polynomially with n.

XIII. REMAINING PROBLEM

In the previous section, we have shown that for a bounded
dimension d, we can solve the box intersection problem in
polynomial time. However, as we have mentioned, polynomial

time does not always mean that the algorithm is practically
feasible.

For example, for a meteorological sensor, the dimension d
is equal to 5, so we need n6 computational steps. For n = 10,
we get 106 steps, which is easy to perform. For n = 100, we
need 1006 = 1012 steps which is also doable – especially on a
fast computer. However, for a very reasonable amount of n =
103 = 1000 data points, the above algorithm requires 10006 =
1018 computational steps – which already requires a long time,
and for n = 104 data points, the algorithm requires a currently
practically impossible amount of 1024 computational steps.

It is therefore desirable to speed up the computations. In
this paper, we show that we can achieve a significant speed
up if we use quantum computations.

XIV. QUANTUM COMPUTATIONS: A REMINDER

Before we explain how exactly quantum computations can
speed up the computations needed to gauge reliability, let us
briefly recall how quantum effects can be used to speed up
computations.

In this paper, we will use Grover’s algorithm for quantum
search. Without using quantum effects, we need – in the worst
case – at least N computational steps to search for a desired
element in an unsorted list of size N . A quantum computing
algorithm proposed by Grover (see, e.g., [4], [5], [13]) can
find this element much faster – in O(

√
N) time.

Specifically, Grover’s algorithm, given:
• a database a1, . . . , aN with N entries,
• a property P (i.e., an algorithm that checks whether P is

true), and
• an allowable error probability δ,

returns, with probability ≥ 1 − δ, either the element ai that
satisfies the property P or the message that there is no such
element in the database.

This algorithm requires c · √N steps (= calls to P), where
the factor c depends on δ (the smaller δ we want, the larger c
we must take).

For the Grover’s algorithm, the entries ai do not need to be
all physically given, it is sufficient to have a procedure that,
given i, produces ai.

Brassard et al. used the ideas behind Grover’s algorithm to
produce a new quantum algorithm for quantum counting; see,
e.g., [2], [13]. Their algorithm, given:

• a database a1, . . . , aN with N entries,
• a property P (i.e., an algorithm that checks whether P is

true), and
• an allowable error probability δ,

returns an approximation t̃ to the total number t of entries ai

that satisfy the property P .
This algorithm contains a parameter M that determines how

accurate the estimates are. The accuracy of this estimate is
characterized by the inequality

∣∣t̃ − t
∣∣ ≤ 2π

M
· √t +

π2

M2
(1)

that is true with probability ≥ 1 − δ.

This algorithm requires c · M · √N steps (= calls to P),
where the factor c depends on δ (the smaller δ we want, the
larger c we must take).

In particular, to get the exact value t, we must attain
accuracy

∣∣t̃ − t
∣∣ ≤ 1, for which we need M ≈ √

N . In this
case, the algorithm requires O(

√
t · N) steps.

XV. QUANTUM COMPUTATIONS CAN DRASTICALLY SPEED

UP GAUGING RELIABILITY

As a part of the above algorithm for checking box inter-
sections, we search among O(nd) vectors y for a vector that
belongs to at least n−k boxes X(j). For each of these vectors
y, we need to find to how many of n boxes X(j) the vector
y belongs; this requires time O(n).

For each vector y, we can use the quantum counting
algorithm to compute the number of boxes in time O(

√
n). We

can then use Grover’s algorithm to reduce the non-quantum
search of N = O(nd) vectors to a search whose time is
equivalent to processing

√
N = O(nd/2) such vectors. For

each of these vectors, we need time O(
√

n). Thus, if we use
quantum computations, we need the total computation time
O(nd/2) · O(

√
n) = O(n(d+1)/2).

This time is much smaller than the non-quantum computa-
tion time O(nd+1). For example, for the above meteorological
example of n = 104 and d = 5, the non-quantum algorithm
requires a currently impossible amount of 1024 computational
steps, while the quantum algorithm requires only a reasonable
amount of 1012 steps.

Comment. A similar square root reduction can be achieved in
the general case, but for general d, n(d+1)/2 computational
steps may still take too long.

XVI. CONCLUSION

In traditional interval computations, we assume that the in-
terval data corresponds to guaranteed interval bounds, and that
fuzzy estimates provided by experts are correct. In practice,
measuring instruments are not 100% reliable, and experts are
not 100% reliable, we may have estimates which are “way
off”, intervals which do not contain the actual values at all.
Usually, we know the percentage of such outlier un-reliable
measurements. It is desirable to check that the reliability of
the actual data is indeed within the given percentage. In this
paper, we have shown that:

• in general, the problem of checking (gauging) this relia-
bility is computationally intractable (NP-hard);

• in the reasonable case when each sensor measures a small
number of different quantities, it is possible to solve this
problem in polynomial time; and

• quantum computations can drastically reduce the required
computation time.

ACKNOWLEDGMENTS

This work was supported by the Alliances for Graduate
Education and the Professoriate (AGEP) grant HRD-0302788
from the National Science Foundation (NSF).

The authors are thankful to Gilles Chabert, Alexandre Gold-
sztejn, Luc Jaulin, Vladik Kreinovich, and Alasdair Urquhart
for their help and encouragement, and to the anonymous
referees for valuable suggestions.

REFERENCES

[1] G. Ausiello, P. Crescenzi, V. Kann, A. Marchetti-Spaccamela, and M.
Protasi, Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties, Springer-Verlag, Berlin-
Heidelberg, 1999.

[2] G. Brassard, P. Hoyer, and A. Tapp, “Quantum counting”, In: Proc. 25th
ICALP, Lecture Notes in Computer Science, Vol. 1443, Springer, Berlin,
1998, 820–831.

[3] A. Goldsztejn, private communication, 2007.
[4] L. Grover, ”A fast quantum mechanical algorithm for database search”,

Proc. 28th ACM Symp. on Theory of Computing, 1996, pp. 212–219.
[5] L. K. Grover, “Quantum mechanics helps in searching for a needle in a

haystack”, Phys. Rev. Lett., 1997, Vol. 79, No. 2, pp. 325–328.
[6] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,

with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001.

[7] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions, Prentice Hall, Upper Saddle River, NJ, 1995.

[8] R. Kohli, R. Krishnamurthi, and P. Mirchandani, “The Minimum Satisfi-
ability Problem”, SIAM Journal on Discrete Mathematics, 1994, Vol. 7,
No. 2, pp. 275–283.

[9] V. Kreinovich, private communication, 2007.
[10] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Com-

plexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, 1997.

[11] V. Kreinovich and L. Longpré, “Fast Quantum Algorithms for Handling
Probabilistic and Interval Uncertainty”, Mathematical Logic Quarterly,
2004, Vol. 50, No. 4/5, pp. 507–518.

[12] M. Martinez, L. Longpré, V. Kreinovich, S. A. Starks, and H. T. Nguyen,
“Fast Quantum Algorithms for Handling Probabilistic, Interval, and Fuzzy
Uncertainty”, Proceedings of the 22nd International Conference of the
North American Fuzzy Information Processing Society NAFIPS’2003,
Chicago, Illinois, July 24–26, 2003, pp. 395–400.

[13] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information, Cambridge University Press, Cambridge, U.K., 2000.

[14] H. T. Nguyen and E. A. Walker, First Course in Fuzzy Logic, CRC
Press, Boca Raton, FL, 2006.

[15] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

[16] S. Rabinovich, Measurement Errors: Theory and Practice, American
Institute of Physics, N.Y., 2005.

APPENDIX

As we have mentioned in the main text, in gauging reli-
ability, it is important to be able to solve the following box
intersection problem:

• Given: a set of n d-dimensional boxes, and a number
k < n.

• Check: is there a vector x which belongs to at least n−k
of these n boxes?

This box intersection problem obviously in NP: it is easy
to check that a given vector x belongs to each of the boxes,
and thus, to check whether it belongs to at least n− k of the
boxes. So we only need a proof of NP-hardness.

The proof is by reduction from the following auxiliary
“limited clauses” problem which has been proved to be NP-
complete:

• Given: a 2-CNF formula F and a number k,
• check: is there a Boolean vector which satisfies at most

k clauses of F .

This problem was proved to be NP-complete in [8] (see also
[1], p. 456).

As we have mentioned in the main text of this paper, to
prove the NP-hardness of our box intersection problem, it is
therefore sufficient to be able to reduce this “limited clauses”
problem to the box intersection problem.

Indeed, suppose that we are given a 2-CNF formula F . Let
us denote the number of Boolean variables in this formula by
d, and the overall number of clauses in this formula F by n.
Based on the formula F , let us build a set of n d-dimensional
boxes, one for each clause. If clause Ci contains Boolean
variables zi1 and zi2 variables, then the i-th box X(i) has sides
[0, 1] in all dimensions except in the dimensions associated
with variables zi1 and zi2. For those two dimensions, the side
is:

• [0, 0] if the variable occurs positively in the clause (i.e.,
if the clause contains the positive literal zij), and

• [1, 1] is the variable occurs negatively in the clause (i.e.,
if the clause contains the negative literal ¬zij).

According to the construction:

• for a clause zi1 ∨ zi2, a vector x belongs to the box

X(i) = . . .×[0, 1]×[0, 0]×[0, 1]×. . .×[0, 1]×[0, 0]×[0, 1]×. . .

if and only of xi1 = 0 and xi2 = 0;
• for a clause zi1 ∨ ¬zi2, a vector x belongs to the box

X(i) if and only of xi1 = 0 and xi2 = 1;
• for a clause ¬zi1 ∨ zi2, a vector x belongs to the box

X(i) if and only of xi1 = 1 and xi2 = 0;
• for a clause ¬zi1 ∨ ¬zi2, a vector x belongs to the box

X(i) if and only of xi1 = 1 and xi2 = 1.

The claim is that there exists a vector x which belongs to at
least n− k of these n boxes if and only if there is a Boolean
vector z which satisfies at most k clauses of the formula F .

Suppose that there exists a vector x which belongs to at
least n − k of these n boxes. According to our construction,
each box X(i) comes from a clause Ci that contains variables
zi1 and zi2. For each box X(i) to which the vector x belongs,
make zi1 =“false” if the box has [0, 0] on the side associated
with variable zi1. Similarly, we make zi2 =“false” if the box
has [0, 0] on the side associated with variable zi2. Because of
the way the boxes were build, the Boolean vector we build
will make the clause associated with the box corresponding
box X(i) false.

For example, if the clause is zi1 ∨ zi2, then the box will
have [0, 0] for the sides associated with both variable, so they
will be both assigned the “false” Boolean value, making the
clause false. This means that the Boolean formula built will
make at least n − k clauses become false. This formula will
satisfy at most k = n − (n − k) clauses.

In the opposite direction, if there is a Boolean vector z
which satisfies at most k clauses of the formula F , build a
vector x = (x1, . . . , xn) which has value:

• xi = 0 in dimension i if the Boolean variable zi

associated with this dimension is false, and
• xi = 1 otherwise.

One can check that for this arrangement, x ∈ X(i) if and only
if the original Boolean vector z made the corresponding clause
Ci false.

Since the Boolean vector z satisfies at most k clauses of the
formula F , it makes at least n − k clauses false. This means
that the vector x that we have built will belong to all the boxes
associated with at least n − k clauses that are false.

The reduction is proven, and so is NP-hardness.

